IInd Midsemestral exam 2004

Algebra IV: B.Sury

1. Let M, N be left A-modules and suppose N is semisimple. If α, β : $M \rightarrow N$ are in $\operatorname{Hom}_{A}(M, N)$ such that Ker $\alpha \subseteq \operatorname{Ker} \beta$, show that there exists $\theta \in 0 \operatorname{End}_{A}(N)$ satisfying $\beta=\theta o \alpha$.
2. Let A be any commutative ring and let G be a finite group. Show that the group ring $A[G]$ is left Noetherian (that is, any ascending chain of left ideals is finite) if, and only if, it is right Noetherian. You may use the map $\sum_{g} a_{g} g \mapsto \sum_{g} a_{g} g^{-1}$.
3. Let G be a finite group and $f, g: G \rightarrow \subseteq$ be class functions. Prove Plancherel's formula : $<f, g>=\sum_{i=1}^{s}<f, \mathcal{X}_{i}><\mathcal{X}_{i}, g>$ where $\mathcal{X}_{1}, \ldots, \mathcal{X}_{s}$ are the irreducible characters of G.
4. Consider the following character table of a finite group (where $\omega=$ $\left.e^{2 \pi i / 3}\right)$:

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
$\mathcal{X}_{p 1}$	1	1	1	1	1	1	1
$\mathcal{X}_{p 2}$	1	1	1	ω^{2}	ω	ω^{2}	ω
$\mathcal{X}_{p 3}$	1	1	1	ω	ω^{2}	ω	ω^{2}
$\mathcal{X}_{p 4}$	2	-2	0	-1	-1	1	1
$\mathcal{X}_{p 5}$	2	-2	0	$-\omega^{2}$	$-\omega$	ω^{2}	ω
$\mathcal{X}_{p 6}$	2	-2	0	$-\omega$	$-\omega^{2}$	ω	ω^{2}
$\mathcal{X}_{p 7}$	3	3	-1	0	0	0	0

Find the order of the group and cardinalities of the conjugacy classes.
5. If a finite group has exactly three irreducible complex representations, prove that it is isomorphic either to $\mathbb{Z} / 3 \mathbb{Z}$ or to S_{3}.
6. Let K be algebraically closed and suppose $G \subseteq G L_{n}(K)$ is a finite group which is completely reducible. Prove that there exists $P \in G L_{n}(K)$ such that $P A P^{-1}$ is a diagonal matrix for all $A \in G$
7. Prove that every simple ring must be of the form $M_{n}(D)$ for some division ring D and some n.
8. Let A be a left Artinian ring (that is, every decreasing chain of left ideals is finite). If the $\operatorname{Jacobson} \operatorname{radical} \operatorname{Jac}(A)$ (the intersection of all maximal left ideals) is zero, prove that A is left semisimple.
9. $G \subseteq G L_{n}(\subset)$ be a finite group such that for some $r \geq 1, \sum_{g}(\operatorname{tr}(g))^{r}=0$. Prove that $\sum_{g} g_{11}^{r}=0$ where

